FANOX introduces its complete range of protection, control and measuring electronic devices for application in the Industry.

We are leaders in the electronic protection of industrial electric motors. Everyday our relays prevent the burnout of any number of motors, saving on repair costs and process downtimes.

Among the many technical advantages of these relays, we highlight the following:

- Thermal memory, which continuously creates a model of the heating and cooling of the motor during its start-up, running, overload and shutoff cycles.
- Immediate detection of phase failure, including at low motor loads, with a rapid shutdown of the motor which prevents costly breakdowns.
- Display module, of the size of a pushbutton of 22 mm in diameter, which, mounted on the outside of the panel or of the motor control center, allows rapid detection of the cause of the motor shutdown.

This protection has become the most reliable and cost effective on the market, and far surpasses the functions offered by other conventional protection devices, such as thermal relays, thermal-electronic relays, manual motor starters or thermal magnetic circuit breakers.

Our relays are ideal for protecting pumps, compressors, fans and all types of industrial motors having to withstand multiple start-up/shutoff cycles, heavy start-ups or that work in high-temperature locations.

Models G and BG are approved by PTB (Physikalisch-Technische Bundesanstalt) of Germany for the protection of EEx e motors that run in explosive or hazardous areas.

Other products of interest include earth leakage relays, especially those which incorporate the toroidal transformer and relay in one single unit.

The range of generator control and protection devices, voltage monitors, phase and frequency relays, timers, manual motor starters and electrical multimeters complete a wide selection of products for application in the Industry.

A complete package of technical information, installation instructions, settings, applications and a selection guide comes included, and provides all the guidelines and instructions necessary for proper use.

Index

Page
M otor protection relays 4
Relays for the protection of EEx e motors 6
Generator protection relays 7
Control relays 8
Voltage monitoring relays 10
Earth leakage relays 12
Electrical multimeters 14
Timers 15
Accessories 16- Current transformers- Thermistor sensors (PTC)
M anual motor starters 17
M otor and generator protection relays, technical briefing

- Electronic motor protection 18
- Installation and setup 18
- Applications 22
- Selection guide 22
Dimensions 23

Motor protection relays

Protections

I> Overload
I< Undercurrent

$\cos \varphi$ Underload

Д Phase imbalance or phase loss
$\xrightarrow[+t^{\circ}]{-2}$ Overtemperature
((\%) Phase sequence

Basic motor protection

For motors of low and medium power in several applications as compressors, ventilators, surface mounted pumps, conveyor belts, machine tools, and in general to protect motors which need dependable and accurate protection relays for every type of start.
Its 3 trip classes cover any type of starting or working cycle.

Integral motor protection

For whatever power motors (1 to 630 A and over), in several applications as surface mounted pumps, compressors, mixers, ventilators, elevators, cranes, industrial refrigeration and in general for those motors requiring a complete protection where the overtemperature (by means of PTC sensor) and a wrong phase sequence protections are required.
Its 7 trip classes cover all type of starting or working cycle.

GL

Protections Models			I> λ					
			C 9	C 21	C 45	GL 16	GL 40	GL 90
Adjustment range Motor 400 V $50 / 60 \mathrm{~Hz}$	$I_{B}(\mathrm{~A})$		3-9,3	9-21,6	20-45,2	4-16,7	15-40,5	40-91
	HP		2-5,5	7,5-12	15-30	3-10	10-25	30-60
	kW		1,5-4	5,5-9	11-22	2,2-7,5	7,5-18,5	22-45
Code no. according to the relay voltage supply ($+15 \%-10 \%$) ac: $50 / 60 \mathrm{~Hz}$	230 Vac	single phase	11203	11223	11243	11303	11323	11343
	$115 \mathrm{Vac}$	single phase	11202	11222	11242	11302	11322	11342
	24 Vac , dc	single phase	11200	11220	11240	11300	11320	11340
	400/440 Vac 3-phase (motor)		-	-	-	-	-	-
	230 Vac	3 -phase (motor)	-	-	-	-	-	-
For \boldsymbol{I}_{N} of the motor below the minimum setting I_{B}			Pass the motor cables several times (n) through the corresponding holes in the relay $\boldsymbol{I}_{\mathrm{B}}=\mathrm{n} \times \boldsymbol{I}_{\mathrm{N}}$					
For \boldsymbol{I}_{N} of the motor above the maximum setting \boldsymbol{I}_{B} External display module (optional)			Use 3 CT .../5 and the lowest range relay of each family					
			ODC			ODGL		

Characteristics

Thermal memory / Overload trip
M aximum motor nominal voltage
Trip classes (IEC 947-4-1)
Phase sequence protection
Phase imbalance protection
Undercurrent protection adjustable/ Trip delay
Underload protection by $\cos \varphi$ / Trip delay
PTC M in/max cold resist.-Average trip / reset resist.
Reset mode
Signalling LED's
Output contacts
Switching power
Terminals: Max. section / screw torque
Power consumption
Protection degree / weight / mounting
Storage temperature
Operation temperature / max. altitude Standards

Yes/From $1,1 \times I_{B}$
1000 Vac
10-20-30

Over 40\%. Tripping time < 3s

Manual and remote
3 LED's: ON + one for each protection
1 relay with $1 \mathrm{NO}+1 \mathrm{NC}$
I_{th} : $5 \mathrm{~A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A} ; \mathrm{DC} 13-30 \mathrm{~V}-2 \mathrm{~A}$
2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN
C9: 6,5VA, 230V; 3VA,115V / C21-C45: 2,5 VA IP20 / 0,3 kg / DIN rail
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
$-15^{\circ}+60^{\circ} \mathrm{C} / 1000 \mathrm{~m} ;-15^{\circ}+50^{\circ} \mathrm{C} / 3000 \mathrm{~m}$
IEC 255, IEC 947, IEC 801, EN 50081-2

C

c UL Ususimm

Yes / From 1,1 $\times I_{B}$
1000 Vac
5-10-15-20-25-30-35
ON \square OFF It actuates during the motor start
Over 40%. Tripping time <3 s
$25 \Omega / 1500 \Omega-3600 \Omega / 1800 \Omega$
Manual and remote

1 relay with 1 NO + 1 NC
Ith: 5A; AC15-250V-2A; DC13-30V-2A
$2,5 \mathrm{~mm}^{2}$, No. $22-12 \mathrm{AWG} / 20 \mathrm{Ncm}, 1.8 \mathrm{LB}-\mathrm{IN}$
2,5 VA
IP20 / 0,5 kg / DIN rail
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
$-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C} / 1000 \mathrm{~m} ;-15^{\circ} \mathrm{C}+50^{\circ} \mathrm{C} / 3000 \mathrm{~m}$
IEC 255, IEC 947, IEC 801, EN 50081-2
C

For dimensions, installations, setting and cur-
ves, see page 18 and following.

- For 3-phase motors up to 1000 Vac. Passing through wires
- Broad range of current adjustment (1 to 630 A and over)
- Precise motor heating and cooling memory, reproduces its thermal image
- Visual indication of tripping cause

Pumps protection

Underload protection by $\cos \varphi$

For application in pumps and other systems where running without load is critical (dry well, transmission belt broken, etc). With the underload protection by $\cos \varphi$ it is ideal when the motor is over-sized, such as submersible pumps in gasoline stations where, at every pumping start-up operation, the motor can work even at the 20% of its nominal load.

Pumps protection

Suitable where the undercurrent (running without load) is critical, as submersible pumps, surface pumps, etc. In these cases, when the equipments run without load (dry well) the relay trips by undercurrent.

P

PF

I>	I< $<$	(8)	$I>\quad \cos \varphi$	A (c)
P 19	P 44	P 90	PF 16	PF 47
7-19,6	19-44,2	40-90,4	4-16,6	16-47,5
4-10	12,5-27,5	27,5-55	2-10	10-30
3-7,5	9,2-20	20-40	1,5-7,5	7,5-22
11403	11423	11443	-	-
11402	11422	11442	-	-
11400	11420	11440	-	-
-	-	-	11374	11384
-	-	-	11373	11383

Pass the motor cables several times (n) through the corresponding holes in the relay $\boldsymbol{I}_{\mathrm{B}}=\mathrm{n} \times \boldsymbol{I}_{\mathrm{N}}$ Use 3 CT .../5 and the lowest range relay of each family ODP

ODPF

Yes / From 1,1 $\times \boldsymbol{I}_{B}$
1000 Vac
5-10-15
Yes. It actuates during the motor start
Over 40%. Tripping time <3 s
From 0,5 to $0,9 \times I_{B}$. Operative from $0,3 \times I_{B} /$ Delay 3 s

M anual, remote and automatic (every 20 minutes)
4 LED's: $\mathrm{ON}+\mathrm{I}>+I<+\lambda$ (r))
1 relay with $1 \mathrm{NO}+1 \mathrm{NC}$
I_{th} : $5 \mathrm{~A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A} ; \mathrm{DC} 13-30 \mathrm{~V}-2 \mathrm{~A}$
$2,5 \mathrm{~mm}^{2}$, No. $22-12 \mathrm{AWG} / 20 \mathrm{Ncm}, 1.8 \mathrm{LB}-\mathrm{IN}$
2,5 VA
IP20 / 0,5 kg / DIN rail
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
$-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C} / 1000 \mathrm{~m} ;-15^{\circ} \mathrm{C}+50^{\circ} \mathrm{C} / 3000 \mathrm{~m}$ IEC 255, IEC 947, IEC 801, EN 50081-2

C

c UL) Ususim

Yes / From $1,1 \times I_{B}$
440 Vac
10-20-30
Yes
Over 40%. Tripping time <3 s
$\cos \varphi$ adjustable 0,1 to 0,9 / Adjustable 5 to 45s

Manual, remote and automatic (every 20 minutes)
4 LED's: $\mathrm{ON}+\mathrm{I}>+\cos \varphi+\boldsymbol{+}$ ($\%$)
1 relay with 1 NO +1 NC
$I_{\text {th }}$: $5 \mathrm{~A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A}$; DC13-30V-2A
$2,5 \mathrm{~mm}^{2}$, No. 22-12AWG / 20Ncm, $1.8 \mathrm{LB}-\mathrm{IN}$
$1,5 \mathrm{~W}-12 \mathrm{VA}(230 \mathrm{Vac})-20 \mathrm{VA}(400 \mathrm{Vac})$
IP20 / 0,5 kg / DIN rail
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
$-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C} / 1000 \mathrm{~m} ;-15^{\circ} \mathrm{C}+50^{\circ} \mathrm{C} / 3000 \mathrm{~m}$
IEC 255, IEC 947, IEC 801, EN 50081-2
C

External display module

By means of this plug-in optional accessory, the relay status can be seen and reset from the exterior of the electrical panel board.
Easy to install. Size of a Ø 22 mm push button
Suitable for motor control centres (MCC) and panel boards.

OD

Relay with external display module

Models	Code no.	Relay type
ODC	12530	C
ODGL	12535	GL
ODP	12540	P
ODPF	12555	PF

This optional display module is mounted externally, e.g. on the panel door or a draw-out unit in a motor control centre (MCC) and connected to the relay by a flat cable (length 2 meters).

The module has the appropriate LED's to signal the trip cause and a reset push-button.
Weight: $0,05 \mathrm{~kg}$.
Protection degree: IP50

Relays for the protection of $\mathbb{E x}$ e motors

\author{

- Approved by PTB for EEx e motors
 - For 3-phase motors up to 1000 Vac
 - Currents from1,5 to 630 A and higher
 - With thermal memory
 - Visual indication of tripping cause
}

Protections

I> Overload
人 Phase imbalance or phase loss古t-Overtemperature

Protection of motors in explosive or hazardous areas

For EEx e motors of any power rating, and currents up to 630A and higher, which work in explosive or hazardous areas such as the petrochemical industry, plastic factories, mines, etc. The relay is installed away from the explosive area.
The overload LED starts to blink from $1,1 \times \boldsymbol{I}_{\mathrm{B}}$.
In the event of a phase loss the relay trips in less than 3 s , even when the motor is at low load.

Relay to be used with the external display module

With the same features and applications as the G17 relay, the BG17 relay incorporates an external display module which shows the status of the relay and allows it to be reset from outside of the panel or the motor control center (MCC).
As the BG17 is designed for use with the ODG display module, it does not include the LED signals on the front of the relay itself.

G

BG

Protections Models Adjustment range	$\boldsymbol{I}_{\mathrm{B}}(\mathrm{A})$	
Motor 400 V	HP	
$50 / 60 \mathrm{~Hz}$	kW	
Code no. according	230 Vac	single phase
to the relay	115 Vac	single phase
voltage supply	24 Vdc	

For \boldsymbol{I}_{N} of the motor below the minimum setting \boldsymbol{I}_{B} For \boldsymbol{I}_{N} of the motor above the maximum setting \boldsymbol{I}_{B} External display module / Code no.

Pass the motor cables several times (n) through the corresponding holes in the relay $\boldsymbol{I}_{\mathrm{B}}=\mathrm{n} \times \boldsymbol{I}_{\mathrm{N}}$ Use 3 CT's $\ldots / 5$ and pass their secondary twice $(n=2)$ through the relay holes No

ODG / 12505

Characteristics

Thermal memory / Overload trip
Maximum motor nominal voltage
15 adjustable tripping curves
Phase imbalance protection
PTC min/max cold resist. / Average trip resistance Reset mode
Signalling LED's
Single phase auxiliary power supply

- Voltage Us
- Frequency
- Consumption
- Protection fuse

Output contacts

- Switching capacity in abnormal conditions
- Short-circuit resistance

Terminals max. section / Screw torque
Protection degree / weight / mounting
Storage temperature
Operation temperature
Standards

G 17 and BG 17

Yes / From 1,1 $\times \boldsymbol{I}_{\mathrm{B}}$
1000 V
Cold tripping times at $6 \times \boldsymbol{I}_{\mathrm{B}}$ from 2 to 30 s
Over 40%. Tripping time <3 s
$100 \Omega / 1500 \Omega-2750 \Omega$
Manual and remote
4 LED's: ON + one for each protection

115-230 Vac (+15\% -6\%) / $24 \mathrm{Vdc}(\pm 10 \%)$
$50 / 60 \mathrm{~Hz}$ (from 49 to $61,2 \mathrm{~Hz}$)
2,5 VA (115-230 Vac) / 1,5 W (24 Vdc)
GL 6 A
1 relay with $1 \mathrm{NO}+1 \mathrm{NC}$
$I_{\text {th }}$: $5 \mathrm{~A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A}$; DC13-30V-2A
1000 A
$2,5 \mathrm{~mm}^{2}$, No. $22-12 \mathrm{AWG} / 20 \mathrm{Ncm}, 1.8 \mathrm{LB}-\mathrm{IN}$
IP20 / 0,5 Kg / DIN rail
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
$-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$
IEC 255, IEC 947, IEC 801, EN 50081-2, VDE 0660

For dimensions, installation, adjustments and curves see pages 18 and following.

ODG display module

This module, which is the size of a pushbutton of $\emptyset 22 \mathrm{~mm}$, is mounted outside on the panel door or on the front of the motor control center (MCC), and is connected to the relay by means of a 2 meters long flat cable.
To see the state of the relay or reset in the event of a tripping, it is not necessary to open the door or remove the MCC, since the module includes the corresponding identifying LED's and the reset button.
Weight: $0,05 \mathrm{Kg}$.

PTB approval:

G and BG relays have been approved by the Physikalisch-Technische Bundesanstalt-PTB for the protection of EEx e protected explosion motors (DIN EN 50019 / DIN VDE 0170 /DIN VDE 0171 part 6) according to the stipulations and requirements of PTB.

PTB report no. PTB Ex 3.43-30004/00

Generator protection relay

Protections

I> Overload
^ Phase imbalance / Phase loss

Generator protection

This relay is specially applicable for protecting low voltage generators up to 1000 V , and current up to 2000 A or higher. It offers a suitable protection since you can choose among 15 tripping curves in order to avoid the generator working over its damage curve.

- For generators up to 1000 Vac
- With themal memory
- Visual indication of tripping cause
- Fast tripping curves

External display module

By means of this plug-in optional accessory the relay status can be seen and reset from the exterior of the electrical panel board.
Easy to install. Size of $\emptyset 22 \mathrm{~mm}$ push button.

GEN

Protections	I> \boldsymbol{A}
Models	GEN 10
Adjustment range $\boldsymbol{I}_{\mathrm{B}}(\mathrm{A})$	$4-10,3$
Auxiliary voltage supply (+15\%-10\%)	24 Vdc
Code no.	11350
For $\boldsymbol{I}_{\mathrm{N}}$ of the generator above 10,3 A	Use $3 \mathrm{CT} . . . / 5$
External display module (optional)	ODGEN

Characteristics

Thermal memory / Overload trip
Yes / From 1,1 $\times \boldsymbol{I}_{B}$
M aximum generator nominal voltage
Trip time $t 6 \times I_{B}$
Phase imbalance protection
Reset mode
Signalling LED's
Output contacts
Switching power
Terminals: Max.section / screw torque
Power consumption
Protection degree / weight / mounting
Storage temperature
Operation temperature / max. altitude Standards

1000 Vac

15 adjustable curves from 0,2 to 3 s .
Over 20\%. Tripping time <3 s
Manual and remote
3 LED's: ON + one for each protection
1 relay with $1 \mathrm{NO}+1 \mathrm{NC}$
$\mathrm{I}_{\text {th }}$: $5 \mathrm{~A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A} ; \mathrm{DC} 13-30 \mathrm{~V}-2 \mathrm{~A}$
$2,5 \mathrm{~mm}^{2}$, No. $22-12 \mathrm{AWG} / 20 \mathrm{Ncm}, 1.8 \mathrm{LB}-\mathrm{IN}$
1,5 W
IP20 / 0,5 kg / DIN rail
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
$-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C} / 1000 \mathrm{~m} ;-15^{\circ} \mathrm{C}+50^{\circ} \mathrm{C} / 3000 \mathrm{~m}$
IEC 255, IEC 801, EN 50081-2

OD

Models	Code no.	Relay type
ODGEN	12545	GEN

This optional display module is mounted externally e.g. on the panel door, and is connected to the relay by a flat cable of 2 meters.

The module has the appropriate LED's to signal the trip cause and a reset push-button.
Weight: $0,05 \mathrm{Kg}$.

Other relays for generators:

- H: Frequency relay. See page 9.
- U3P: 3-phase voltage relay (without neutral). See page 11.
- U3N: Three-phase voltage relay (with neutral). See page 11.

For dimensions, installation, adjustment and curves see pages 18 and following.

Control relays

Protections

^ Phase loss / phase imbalance
((8) Phase sequence
$\underset{+t^{\circ}}{-\square-O v e r t e m p e r a t u r e}$
Hz Frequency variation
1 Temperature variation
Th Thermistor short-circuit

Phase relay

- To protect 3-phase devices
- Suitable for air conditioning, elevators, cranes, hoists and similar installations.
- Sensitive to incorrect phase sequence.
- 22,5 mm wide.

Phase and temperature relay

- To protect 3-phase devices
- Suitable for motors with built-in PTC sensors in applications such as elevators, cranes, hoists and similar installations.
- Sensitive to incorrect phase sequence.
- M onitoring of short circuit and broken wire in PTC circuit.
- 22,5 mm wide.

Characteristics

Nominal frequency
Control range
Hysteresis
PTC sensor: min/max cold resist - Trip resist
Trip time delay
Reset mode
Signalling LED's
Output contacts
Switching power
Maximum terminal section / screw torque
Power consumption
Protection degree / weight
Storage / operation temperature
$50 / 60 \mathrm{~Hz}$
$50 / 60 \mathrm{~Hz}$
Phase loss: with resistive loads it trips when a phase loss occurs. With three-phase motors it trips if the voltage regenerated by the motor is lower than 60% of the main voltage. Phase imbalance $>40 \%$

- $100 \Omega / 1500 \Omega-2300 \Omega$
$<0,1$ s
Automatic
2 LED's: $O N+\lambda$ ($\mathbf{(F)}$)
1 relay with 1 change over NO - NC
$\mathrm{I}_{\text {th }}$: $5 \mathrm{~A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A}$; DC13-30V-2A
$2,5 \mathrm{~mm}^{2}$, No. $22-12 \mathrm{AWG} / 20 \mathrm{Ncm}, 1.8 \mathrm{LB}-\mathrm{IN}$
7,5 VA (230 Vac) - $11 \mathrm{VA}(400 \mathrm{Vac})$
IP20 / 0,12 kg
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$
$100 \Omega / 1500 \Omega-2300 \Omega$
$<0,1$ s
Automatic
3 LED's: ON + 人 $($ (8) $)+\underset{+t^{-}}{+}$
1 relay with 1 change over NO - NC
$\mathrm{I}_{\text {th }}$: 5 A ; AC15-250V-2A; DC13-30V-2A
$2,5 \mathrm{~mm}^{2}$, No. 22-12AWG / $20 \mathrm{Ncm}, 1.8 \mathrm{LB}-\mathrm{IN}$
$7,5 \mathrm{VA}(230 \mathrm{Vac})-11 \mathrm{VA}(400 \mathrm{Vac})$
IP20 / 0,13 kg
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$

C

- Self-powered by the voltage to be monitored (S, ST y H).
- Visual indication of tripping cause
- DIN rail mounting

Frequency monitoring relay

- Suitable for monitoring the frequency of a single phase or 3-phase system.
- Suitable for generators, alternators and electrical generator sets.
- M aximum and minimum thresholds can be adjusted separately.
- Two independent output relays.

Lifts temperature control relay

- It controls the temperature of the lift motor room (relay + external module ODT2) or the temperature inside of the switchboard for those lifts without motor room (relay + internal sensor INT2).
- Designed according to the EN 81-1 standard and complying with the European Union Directive for Lifts (95/16/CE).
- Two adjustable temperature thresholds.
- 22,5 mm wide.

H

T

Thermistor protection relay

- Controls the temperature with the use of thermistors (PTC sensors)
- Detects short-circuits and breakage in the circuit of sensors.
- Protects the motors against overtemperature caused by excess surrounding temperature, insufficient ventilation or cooling, etc.
- Applicable in transformers and other machines.
- 22,5 mm wide.

MT

$\mathrm{Hz}>\mathrm{Hz}<$			1			
	H		T2		ODT2	INT2
	-		-		-	-
115 Vac	Self-powered single phase	230 Vac	230 Vac (Aux)	$24 \mathrm{Vac}, \mathrm{dc}$	-	-
12100		12101	12051	12052	12037	12036

$50 / 60 \mathrm{~Hz}$ selectable by a dipswitch
Hz> From $+0,5$ to $+3,5 \mathrm{~Hz}$. Steps of $0,5 \mathrm{~Hz}(\pm 0,1 \%)$
$\mathrm{Hz}<$ From $-0,5$ to $-3,5 \mathrm{~Hz}$. Steps of $0,5 \mathrm{~Hz}(\pm 0,1 \%)$ $\leq 0,5 \%$

Adjustable from 0,2 to $30 s \pm 5 \%$
Automatic
3 LED's: ON + Hz> + Hz<
2 relays, 1 per limit, with 1 change over NO - NC $I_{\text {th }}$ 5A; AC15-250V-2A; DC13-30V-2A
$2,5 \mathrm{~mm}^{2}$, No. $22-12 \mathrm{AWG} / 20 \mathrm{Ncm}, 1.8 \mathrm{LB}-\mathrm{IN}$
3,7 VA (230 Vac)
IP20 / 0,3 kg
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$

$50 / 60 \mathrm{~Hz}$
Maximum temperature setting from $40^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ M inimum temperature setting from $-5^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ $2^{\circ} \mathrm{C}$

Automatic
2 LED's: ON + I
1 relay with 1 change over NO - NC
$I_{\text {th }}$ 5A; AC15-250V-2A; DC13-30V-2A
$2,5 \mathrm{~mm}^{2}$, No. $22-12 \mathrm{AWG} / 20 \mathrm{Ncm}, 1.8 \mathrm{LB}-\mathrm{IN}$
5 VA (230 Vac) - 0,5 W (24 Vdc)
IP20 / 0,11 kg
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$

$50 / 60 \mathrm{~Hz}$
According to the PTC installed
$25 \Omega / 1500 \Omega-3600 \Omega$. Reset 1800Ω
$<0,1$ s
Automatic
3 LED's: $\mathrm{ON}+\square+{ }_{+t}^{+}+$
1 relay with $1 \mathrm{NO}+1 \mathrm{NC}$
$I_{\text {th }}: 5 \mathrm{~A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A}$; DC13-30V-2A
$2,5 \mathrm{~mm}^{2}$, No. 22-12AWG / $20 \mathrm{Ncm}, 1.8 \mathrm{LB}-\mathrm{IN}$
6 VA (230 Vac)
IP20 / 0,12 kg
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$

Voltage monitoring relays

Protections

^ Phase loss
(r8) Phase sequence
U> Overvoltage
U< Undervoltage
Loss of neutral

Single phase voltage relay

- Suitable for single phase installations such as air conditioning, electronic equipments, etc.
- Suitable for AC/DC.
- Minimum and maximum thresholds can be adjusted separately.
- Reset time delay adjustable.

U1

Three-phase voltage relay

- Protects equipment such as digital instruments or electrical equipment from voltage variations in the network.
- Suitable for AC/DC.
- Minimum and maximum thresholds adjustables (two potentiometers).
- Tripping time delay adjustable (two potentiometers).
- $22,5 \mathrm{~mm}$ wide.

U1D

Protections	$U>\quad U<$			$U>\quad U<$		
Models	U1-24 D	U1-115	U1-230	U1D-24D	U1D-115	U1D-230
Frequency	Direct c.	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$	DC	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$
M aximum threshold V	24-27	115-130	230-260	23-28	105-135	215-275
M inimum threshold V	21-24	100-115	200-230	19-25	90-120	160-230
Code no.	12023	12020	12021	12028	12026	12027

Characteristics

Type of current to be monitored
Auxiliary supply $\pm 10 \%$
Accuracy
Trip time delay
Reset time delay
Reset mode
Hysteresis
Signalling LED's
Output contacts
Switching power
Terminals: Max. section / Screw torque
Power consumption
Protection degree / weight
Storage / operation temperature

Single phase
Self-powered
$\boldsymbol{U}>+4 \%-1 \% ; \boldsymbol{U}<+1 \%-4 \%$
0,05 to $306 \mathrm{~s}(\pm 20 \%)$
Automatic
4\% of the nominal voltage
3 LED's: $\mathbf{O N}+\boldsymbol{U}>+\boldsymbol{U}<$
1 relay with $1 \mathrm{NO}+1 \mathrm{NC}$
$I_{\text {th }}: 5 \mathrm{~A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A} ; \mathrm{DC} 13-30 \mathrm{~V}-2 \mathrm{~A}$
2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN
4 VA (115Vac) - 7,5VA (230Vac) - 0,7W (24 Vdc)
IP20 / 0,2 kg
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$

Single phase
Self-powered
$\boldsymbol{U}>+4 \%-1 \% ; \boldsymbol{U}<+1 \%-4 \%$
0,1 to $6 \mathrm{~s}(\pm 20 \%)$ for $\boldsymbol{U}>\boldsymbol{U} \boldsymbol{<}$
Automatic
4\% of the nominal voltage
3 LED's: ON $+\boldsymbol{U}>+\boldsymbol{U}<$
1 relay with 1 change-over NO +1 NC
$I_{\text {th }}: 5 \mathrm{~A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A} ; \mathrm{DC} 13-30 \mathrm{~V}-2 \mathrm{~A}$
2,5 mm², No. 22-12AWG / 20Ncm, 1.8 LB - IN 3 VA (115Vac) - 5VA (230Vac) - 0,7W (24 Vdc) IP20 / 0,11 kg
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$

- Self-powered by the voltage to be monitored
- Visual indication of tripping cause
- DIN rail mounting

Three-phase voltage relay

- Protects three-phase installations against voltage variations between phases, incorrect sequence of phases and phase loss.
- Minimum and maximum thresholds adjustables (two potentiometers).
- Tripping time delay adjustable (two potentiometers).
- Model U3S-420 is valid for 400 and 440 nominal V. - 22,5 mm wide.

Three-phase voltage relay

- Suitable to protect three-phase installations against variations in main voltage. Sensitive to incorrect phase sequence.
- Applicable in generators, automatic transfer setups, etc.
- Maximum and minimum thresholds can be adjusted separately.
- Two independent output relays.

Three-phase voltage relay

- Suitable to protect three-phase with neutral installations against variations in main voltage and loss of neutral. Sensitive to incorrect phase sequence.
- Applicable in generators, automatic transfer setups, etc.
- Maximum and minimum thresholds can be adjusted separately.
- Two independent output relays.

U3 N

$U>\quad U<$	A (\%)	U	$\boldsymbol{U}<$ A	(88)	U>	$\boldsymbol{U}<$ A	${ }^{*}$ N ($\mathrm{C} \%$
U3S-230	U3S-420	U3P-230	U3P-400	U3P-440	U3N-230	U3N-400	U3N-440
$50 / 60 \mathrm{~Hz}$							
210-290	380-500	230-260	400-460	440-500	230-260	400-460	440-500
185-230	350-430	200-230	340-400	380-440	200-230	340-400	380-440
12071	12070	12066	12065	12067	12056	12055	12057

Three phase
Self-powered
$\boldsymbol{U}>+4 \%-1 \% ; \boldsymbol{U}<+1 \%-4 \%$
0,1 to $6 \mathrm{~s}(\pm 20 \%)$ for $\boldsymbol{U}>\boldsymbol{U} \boldsymbol{<}$
Automatic
4\% of the nominal voltage
4 LED's: $O N+\boldsymbol{U}>+\boldsymbol{U}<+(\boldsymbol{*}) \boldsymbol{\lambda}$
1 relay with 1 change-over NO + 1 NC
$I_{\text {th }}$: $5 \mathrm{~A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A} ; \mathrm{DC} 13-30 \mathrm{~V}-2 \mathrm{~A}$
$2,5 \mathrm{~mm}^{2}$, No. $22-12 \mathrm{AWG} / 20 \mathrm{Ncm}, 1.8 \mathrm{LB}-\mathrm{IN}$
$7,5 \mathrm{VA}(230 \mathrm{Vac})-11 \mathrm{VA}(400 \mathrm{Vac})$
IP20 / 0,12 kg
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$

Three-phase

Self-powered
$\boldsymbol{U}>+4 \%-1 \% ; \boldsymbol{U}<+1 \%-4 \%$
0,1 to $3,7 \mathrm{~s}(\pm 20 \%)$ for $\boldsymbol{U}>\boldsymbol{U} \boldsymbol{<}$

Automatic
4\% of the nominal voltage
4 LED's: ON + U> + (\%) $\lambda+U<\lambda$
2 relays with 1 NO
$\mathrm{I}_{\text {th }}$ 5A; AC15-250V-2A; DC13-30V-2A
$2,5 \mathrm{~mm}^{2}$, No. 22-12AWG / $20 \mathrm{Ncm}, 1.8 \mathrm{LB}-\mathrm{IN}$ $12 \mathrm{VA}(230 \mathrm{Vac})-20 \mathrm{VA}(400 \mathrm{Vac})$
IP20 / 0,35 kg
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$

Three-phase with neutral
Self-powered
$\boldsymbol{U}>+4 \%-1 \% ; \boldsymbol{U}<+1 \%-4 \%$
0,1 to $3,7 \mathrm{~s}(\pm 20 \%)$ for $\boldsymbol{U}>\boldsymbol{U}<*_{N}^{*}$

Automatic
4% of the nominal voltage
4 LED's: $O N+\boldsymbol{U}>+(\boldsymbol{P}) \boldsymbol{\lambda}+\boldsymbol{U}<\boldsymbol{\lambda} \psi_{N}^{*}$
2 relays with 1 NO
$\mathrm{I}_{\text {th }}$: $5 \mathrm{~A} ; \mathrm{AC} 15-250 \mathrm{~V}-2 \mathrm{~A}$; DC13-30V-2A
$2,5 \mathrm{~mm}^{2}$, No. 22-12AWG / $20 \mathrm{Ncm}, 1.8 \mathrm{LB}-\mathrm{IN}$
$12 \mathrm{VA}(230 \mathrm{Vac})-20 \mathrm{VA}(400 \mathrm{Vac})$
IP20 / 0,35 kg
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-15^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$

Earth leakage relays

Multirange relay with built-in toroidal transformer

- Sensitivity from 0,025 to 25A.
- Trip time delay from 0,02 to 5s
- Modular size. DIN rail mounting.
- Protection front cover.

Multirange relay with built-in

 toroidal transformer- Sensitivity from 0,025 to 25A.
- Trip time delay from 0,02 to 5 s .
- Compact device. Suitable for motor control centers (MCC).

ELR-A

ELR-A

Adjustable from 0,025 A to 25 A
Adjustable from 0,02 s to 5 s
24-48 Vdc, ac 115 Vdc , ac

230-400 Vac 41015

Models
Sensitivity
Trip time delay

Aux. voltage supply $50 / 60 \mathrm{~Hz}$
Code no.

Built-in Ø28 mm

Automatic, manual and remote (in manual mode disconnect the aux. supply during 1s)
2 LED's: ON + Trip
Selectable: normally de-energized or energized 2 change over NO-NC
5A - 250V
2,5 mm ${ }^{2}$
3 VA
6 modules $\times 17,5 \mathrm{~mm}=105 \mathrm{~mm}$
$50 / 60 \mathrm{~Hz}$
IP20 / 0,4 kg
$-10^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$
IEC 41-1, IEC 255, VDE 0664, EN 50081-1, EN 50082-2

Built-in $\varnothing 60 \mathrm{~mm}$ and $Ø 110 \mathrm{~mm}$

Automatic, manual and remote (in manual mode disconnect the aux.supply during1s)
2 LED's: ON + Trip
Normally de-energized
1 change over NO-NC
5A-250V
$2,5 \mathrm{~mm}^{2}$
3 VA
No
$50 / 60 \mathrm{~Hz}$
P20 / 0,4 y 0,6 kg
$-10^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$
IEC 41-1, IEC 255, VDE 0664, EN 50081-1, EN 50082-2

Earth
 $0-3=380-415 \mathrm{Vac}$
$0-2=220-240 \mathrm{Vac}$ $\begin{aligned} 0-2 & =20-240 \mathrm{Vac} \\ 0-1 & =110-127 \mathrm{Vac}-\mathrm{dc}\end{aligned}$
$0-2=48 \mathrm{Vac}-\mathrm{dc}$
$0-2=48 \mathrm{Vac-dc}$
$0-1=24 \mathrm{Vac-dc}$

- Electronic relays with adjustable delay time and sensitivity.
- Suitable for direct pulse current.
- Practically immune to external disturbances.

Relay with adjustable delay time and sensitivity

- Selectable sensitivity 0,3 or $0,5 \mathrm{~A}$.
- Selectable tripping time delay 0,02 or 0,5s.
- To be used with CT-1 transformers.
- Modular size. DIN rail mounting .
- Sealable front cover.

Multirange relay

- Sensitivity from 0,025 to 25A.
- Trip time delay from 0,02 to 5 s .
- To be used with CT-1 transformers.
- Modular size. DIN rail mounting.
- Sealable front cover.

ELR-B

ELR-3C

ELR-B
 $0,3 \mathrm{~A}$ or $0,5 \mathrm{~A}$
 $0,02 \mathrm{~s}$ or $0,5 \mathrm{~s}$

24-48 Vdc, ac

$$
\begin{gathered}
115 \mathrm{Vdc}, \mathrm{ac} \\
230-400 \mathrm{Vac} \\
41010
\end{gathered}
$$ 41012

ELR-3C
Adjustable from $0,025 \mathrm{~A}$ to 25 A
Adjustable from $0,02 \mathrm{~s}$ to 5 s
$24-48 \mathrm{Vdc}$, ac
415 Vdc, ac
41005

In combination with CT-1
20 m with cables twisted
Automatic, manual and remote (in manual mode disconnect the aux. supply during 1s)
2 LED's: ON + Trip
Normally de-energized
1 change over NO-NC
5A-250V
$2,5 \mathrm{~mm}^{2}$
3 VA
3 modules $\times 17,5 \mathrm{~mm}=52,5 \mathrm{~mm}$
$50 / 60 \mathrm{~Hz}$
IP-20 / 0,2 kg
$-10^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$
IEC 41-1, IEC 255, VDE 0664, EN 50081-1, EN 50082-2

Toroidal transformers

- To be used with ELR-B and ELR-3C relays.
- The transformer and relay assembly sensitivity is fixed by the relay.

In combination with CT-1
20 m with cables twisted
Automatic, manual and remote (in manual mode disconnect the aux. supply during 1s)
2 LED's: ON + Trip
Normally de-energized
1 change over NO-NC
5A - 250V
2,5 mm^{2}
3 VA
3 modules $\times 17,5 \mathrm{~mm}=52,5 \mathrm{~mm}$
$50 / 60 \mathrm{~Hz}$
IP-20 / 0,2 kg
$-10^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$
IEC 41-1, IEC 255, VDE 0664, EN 50081-1, EN 50082-2

CT-1

Type	Inner $\boldsymbol{\varnothing}$	Code no. Weight (kg)	
CT-1/35	35 mm	41025	0,2
CT-1/60	60 mm	41030	0,3
CT-1/80	80 mm	41035	0,5
CT-1/110	110 mm	41040	0,5
CT-1/160	160 mm	41045	1,4
CT-1/210	210 mm	41050	1,5

Working principles: The toroidal transformer is installed between the source and the load. The system works on the current balance principle. In a correct installation the vector sum of the currents is zero and the relay will not trip.
In case of an insulation fault on the circuit a leakage current flows to earth. Now the vector sum of the current passing through the transformer is not zero, this imbalance is detected by the transformer that induces a current in the secondary winding which is connected to the relay.
If the fault level is higher than the selected sensitivity and when the trip time delay has elapsed, the relay trips and actuates on the shunt trip of a circuit breaker or on the coil of a contactor interrupting therefore the supply to the load.
The dimensioning of the toroidal transformer depends on the diameter of all active wires (not earth conductors) put through the transformers.

- Measure and display up to 30 parameters of a three phase line with or without neutral. True RMS values.
- All the values can be read without making program changes.
- Reduced size $96 x 96 \mathrm{~mm}$. Flush mounting in panel

V
Voltage
A Current
$\operatorname{Cos} \varphi$ Power factor (PF)
W Active power (P)
VAr Reactive power (Q)
VA Apparent power (S)
kWh Active energy counter
kVArh Reactive energy counter
Hz Frequency
${ }^{\circ} \mathrm{C}$ Temperature
Max Maximum values

- Calculates the current demand.
- 4 displays with red LED's of 3 digits with 7 segments for easy reading.
- 3 membrane push-buttons.
- Automatic scale of units.
- Suitable for all electrical switchboards used in the industrial field for instruments, motors, generators, etc.
- With active and reactive energy meter.
- 4 displays with red LED's of 3 digits with 7 segments for easy reading.
- 3 membrane push-buttons.
- Automatic scale of units.
- Suitable for all electrical switchboards used in the industrial field for instruments, motors, generators, etc.

EMM

Models	EMM 4	EMM 6
Measured and displayed values	V A PF W VAr VA Hz ${ }^{\circ} \mathrm{C} \mathrm{Max}$	V A PF W VAr VA kWh kVArh Hz Max
Auxiliary supply $\pm 10 \% ~ 50 / 60 ~ H z$	$100-125 / 220-240 / 380-415 \mathrm{~V}$	$100-125 / 220-240 / 380-415 \mathrm{~V}$
Code no.	41200	41205

Characteristics		
Voltage input	4 wires imput. For both 4 and 3 wires systems (in this case don't connect N)	
- Input impedance	$1 \mathrm{M} \Omega$	$1 \mathrm{M} \Omega$
- Continuous overload	+20\%	+20\%
Current input	From 0,02 to 5 A . Use always 3 CT .../5. M ultimeter self-consumption < 5 VA	
- CT primary $\boldsymbol{I}_{\mathrm{N}}$ current	Range between 5 and 10.000 A . This value has to be programmed by the user in the multimeter	
- Continuous overload	+30\%	+30\%
M aximum terminal section	2,5 mm ${ }^{2}$	2,5 mm ${ }^{\text {2 }}$
Front protection degree / weight	IP $52 / 0,5 \mathrm{~kg}$	IP $52 / 0,5 \mathrm{~kg}$
Storage / operation temperature; humidity	$-25^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C} /-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$; $<90 \%$	$-25^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C} /-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$; $<90 \%$
Standards	IEC EN 50081-2, IEC EN 50082-1, IEC EN 61010-1	IEC EN 50081-2, IEC EN 50082-1, IEC EN 61010-1

EMM 4 EMM 6

-	-	$\mathrm{V}_{\text {L-N }}$ Voltage
-	-	$\mathrm{V}_{\text {L-L }}$ Voltage
-	-	A Current
-	-	PF Power factor $\cos \varphi$
-	-	W Active power
-	-	VAr Reactive power
-	-	VA Apparent power
	-	kWh Act. en. count
	-	kVArh React. en. count
-	-	Hz Frecuency
-		${ }^{\circ} \mathrm{C}$ Temperature
-	-	Max. (instantaneous)
	-	Integrated active power
-		Max. (instantaneous)
-		Integrated current

Measured parameters				Range	Accuracy \% \pm digits
$\mathrm{V}_{\mathrm{LL}-\mathrm{N}}$	$\mathrm{V}_{\text {L2-N }}$	$\mathrm{V}_{\text {L3-N }}$	$\Sigma \mathrm{V}_{\text {L-N }}$	20-290 Vrms	$\pm 0,5 \pm 1$
$\mathrm{V}_{\mathrm{Ll}-2}$	$\mathrm{V}_{\text {L2-3 }}$	$\mathrm{V}_{\mathrm{L} 3-1}$	$\Sigma \mathrm{V}_{\text {L-L }}$	20-500 Vrms	$\pm 0,5 \pm 1$
$\mathrm{I}_{\mathrm{L} 1}$	I_{12}	L_{13}	Σl_{L}	0,02-9990 Arms	$\pm 0,5 \pm 1$
$\mathrm{PF}_{\mathrm{L1}}$	$\mathrm{PF}_{\mathrm{L} 2}$	$\mathrm{PF}_{\mathrm{L}_{3}}$	$\sum \mathrm{PF}_{L}$	0,1 a 1 (+ind.,-cap.)	$\pm 1 \pm 1$
P_{LI}	$\mathrm{P}_{\mathrm{L} 2}$	$P_{L 3}$	$\sum \mathrm{P}_{\mathrm{L}}$	0,01-9990 kW	$\pm 1 \pm 1$
Q_{LI}	$\mathrm{Q}_{\mathrm{L} 2}$	$\mathrm{Q}_{\mathrm{L} 3}$	ΣQ_{L}	0,01-9990 kVAr	$\pm 1 \pm 1$
$\mathrm{S}_{\mathrm{L} 1}$	$\mathrm{S}_{\mathrm{L} 2}$	$S_{L 3}$	$\Sigma S_{\text {L }}$	0,01-9990 kVA	$\pm 1 \pm 1$
EkWh				0-10 ${ }^{8} \mathrm{kWh}$	Clase 2
EkVArh				0-108 ${ }^{8} \mathrm{kVArh}$	Clase 2
F_{LI}				40-500 Hz	$\pm 0,5 \pm 1$
T	M easured with internal sensor			$0-60^{\circ} \mathrm{C}$	$\pm 2^{\circ} \mathrm{C}$
$\sum P_{L \text { max }}$	Values every second				
$\sum \mathrm{P}_{\text {L max }}$	Average of max. values over last 15 minutes				
$L_{L 1 \text { max }}$	$\mathrm{L}_{\mathrm{L} 2 \text { max }}$	$L_{L 3 \text { max }}$	Values every second		
$\mathrm{L}_{\mathrm{L} 1 \text { max }}$	$\mathrm{I}_{\mathrm{L} 2 \text { max }}$	$L_{L 3 \text { max }}$	Average of max. values over last 15 minutes		

For dimensions see page 23

- Multifunction digital timer
- Possibility of programming up to 9 different times. Each time can be set from 0,1 seconds to 99 hours
- With built-in battery which allows timer to be programmed without connecting to auxiliary voltage. Complete battery discharge does not affect operation or adjustment settings.
- For control and automation systems in industry.
- Command contact with 5 programmable functions.
- 2 digit, 7 segment LED displays and push-buttons provide programming, and during operation allow for monitoring of the time period and review the programmed settings.
- 45 mm module size, 35 mm wide. DIN EN 50022-35 rail mounting.

MTR-10

Model
Auxiliary power supply ($+15-10 \%$)
Code no.
Characteristics
Time setting range
Accuracy
Repeat accuracy
Number of different times per program
Output contacts
Switching power
Terminals: max section / screw torque
Mechanical / electrical life
Consumption
Protection degree / weight
Storage / operation temperature
Standards
Function example diagrams
U. power supply
U: power supply \quad R: relay output
Output relay at start: $\mathbf{1 L}$ de-energized; $\mathbf{1 H}$ energized
Work mode: $\mathbf{C O}$ non-cycle; $\mathbf{C 1}$ cycle.
Command contact: $\mathbf{c u}, \mathbf{c r}, \mathbf{c l}, \mathbf{c i}, \mathbf{c o}$.

Delay on

1L-CO-cu

Timing on

1H-CO - Cu

Delay off

With command contact
1H-CO - co

MTR-10

230 V 50/60 Hz, 24 Vdc , ac
12110

From 0,1 seconds to 99 hours
$1 \% \pm 10 \mathrm{~ms}$
0,5\%
Up to 8 in cycle mode and 9 in no-cycle 1 relay with 2 timed change over contacts NO-NC
$I_{\text {th }}$: 5 A ; AC15-250V-2A; DC13-30V-2A
2,5 mm ${ }^{2}$, No. $22-12 A W G / 20 N c m, 1.8 \mathrm{LB}-\mathrm{IN}$
$>20 \times 10^{6}$ operations / $>10^{5}$ operations
8 VA (230 Vac) - $1 \mathrm{~W}(24 \mathrm{Vdc})$
IP 40 front $/ 0,15 \mathrm{~kg}$
$-30^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} /-20^{\circ} \mathrm{C}+55^{\circ} \mathrm{C}$
IEC 255

C

Double timing

1L-CO - Cu

Double timing
Cycle work mode
1H-C1-cu

Four timings
Cycle work mode 1H-C1-cu

Timing with partial
shutdown by command contact
1L-CO - cl

Programmable parameters

- Initial state of outpout relays: energized (1H) or de-energized (1L).
- Working mode: cycle (C1) or non-cycle (C0).
- Number of different times per program: up to 8 in cycle mode and up to 9 in non-cycle.
- Time setting range: from 0,1 seconds to 99 hours.
- Command contact.

Auxiliary voltage
A1-A2: 230 Vac A2-A3: $24 \mathrm{Vac}, \mathrm{dc}$

Command contact Can be switched on in two ways:

- By closing an external voltage free contact between M and S
- By connecting 5-35 Vac, dc between $\mathrm{M}(+)$ and $\mathrm{R}(-)$

One of the following arrangements can be programmed: Each diagram represents the effect of the command contact for the two initial states of the output relay: de-energized (1L) and energized (1H).
cu Switched off contact
Its function is blocked
cr Reset contact
When connected the output relay is de-energized; upon disconnecting, the
programmed timing starts.

cl Lock contact
A partial shutdown of the timing takes place during its operation.

ci Delay on contact When disconnected the output relay is de-energized; when connected the programmed timing starts.

co Delay off contact When disconnected the output relay is de-energized. When connected, the relay is energized. When disconnected again, the programmed timing starts.

Accessories

Current transformers

- Up to 1000 A of primary current.
- Transformers ratio .../5.
- Sealable connection terminal box, metal brackets for fitting and bus-bar holders included.

CT

Primary $\mathbf{. . / 5 A}$	Model	Code	VA class $\mathbf{1}$
$\mathbf{6 0}$	CT20	41402	2,5
$\mathbf{1 0 0}$	CT20	41404	2,5
$\mathbf{1 5 0}$	CT20	41406	5
$\mathbf{2 0 0}$	CT30	41412	5
$\mathbf{2 5 0}$	CT30	41414	5
$\mathbf{3 0 0}$	CT30	41416	5
$\mathbf{4 0 0}$	CT30	41418	5
$\mathbf{5 0 0}$	CT50	41422	5
$\mathbf{6 0 0}$	CT50	41424	5
$\mathbf{8 0 0}$	CT50	41426	10
$\mathbf{1 0 0 0}$	CT50	41428	15

Characteristics

Overload
Max. line voltage bus-bars / cable1000V
Max. size: bus-bars / Ø cable (mm) CT 20
Max. size: bus-bars / Ø cable (mm) CT 30
Max. size: bus-bars / Ø cable (mm) CT 50

$$
1,2 I_{N}
$$

$660 \mathrm{~V} / 1000 \mathrm{~V}$
$30 \times 10 / \varnothing 20$
$40 \times 10 / 030$
$60 \times 20 / \varnothing 40$

$\mathbf{m m}$	CT $\mathbf{2 0}$	CT 30	CT $\mathbf{5 0}$
A Ø	23	31	46
B	30	42	61
C	11	11,5	21
D	11	11,5	11
E	25	42	51
F	67	82	111
G	60	75	101
H	32,5	42	44
I	58	59	60
J	32	45	45
K	12	17	17

C

Thermistor sensors

- Connected to GL, G, BG or ST relays protect motors against overtemperature.
- PTC. Positive temperature coeficient
- PTC 120, for internal mounting. Temperature threshold $120^{\circ} \mathrm{C}$.
- PTCEX 70, for external mounting. Temperature threshold $70^{\circ} \mathrm{C}$.

PTC

Models	PTC 120	PTCEX 70
Code	41700	41705
Threshold temperature	$120^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
Threshold resistance	$\geq 1330 \Omega$	$\geq 1330 \Omega$
Mounting	internal	external

Manual motor starters

- Overload and short-circuit protection
- Overload range adjustable from 0,1 to 25A.
- Broad range of accessories
- Suitable for small size motors in machine-tools, conveyor systems, etc.
- Modular size 45 mm . DIN rail mounting (EN 50022-35).
- Isolating and main switch function (IEC 204-1).

Accessories

For dimensions see page 23

- Current limiter M-SB $\left(I_{N}=32 A\right)$, increases the short circuit capacity up to $50 \mathrm{kA} / 400 \mathrm{~V}$. Assembly: under the manual motor starter or remoted from it.
- Undervoltage trip and remote trip.
- Enclosures, auxiliary contacts, emergency push-button and indicator lights.

Description / Model / Code no.

- Current limiter M-SB 03990
- Auxiliary contacts (*NO early make)

Contact	Side mounting		Inside mounting	
2 NO	M-HS2O	03901		
NO + NC	M-HS11	03900	M-EHS11	03908
NO	M-HS1O	39011	M-SHS1O	03906
2 NC	M-HSO2	03903		
NC	M-HS01	39031	M-SHS01	03907
NO* + NC	M-VHS11	03902		

- Remote trip and undervoltage trip (Inside mounting)

V/ Hz	Remote		Undervoltage	
24/50-60	M-AS-05	03923	M-UN-05	03913
$\begin{aligned} & 110 / 50 \\ & 120 / 60 \end{aligned}$	M-AS-15	03920	M-UN-15	03910
$\begin{gathered} 220-240 / 50 \\ 240 / 60 \end{gathered}$	M-AS-25	03921	M-UN-25	03911
$\begin{gathered} 380-415 / 50 \\ 440 / 60 \end{gathered}$	M-AS-45	03922	M-UN-45	03912
$500 / 50$			M-UN-55	03915
- Enclosures				
Surface mo	unting IP41		M-GE	03950
Flush moun	ting IP41		M-FP	03940
Kit IP55 (M	-GE and M-		M-BS	03948
Enclosure I	54, 5 poles	CEE-17	M-GC	04055
Idem with	phase invert		M-GC1	04056
- Emergency stop-operation for M-GE and M-FP				
Push-butto	n type IP55		M-PT	03980
Self-lockin	g type IP55		M-PV	03981
Self-lockin	with key IP		M-PS	39822
- Others for enclosures M-GE and M-FP				
Padlocking	feature (max	x. 3)	M-VSL	03988
N -terminal			M-N	03949
Indicator lights white, red or green				

Motor and generator protection relays. Installation and setup

The motor protection

The electric motor is one of the most important operating devices in industry. Many times the shutdown of an industrial process is caused by a simple motor. High-cost production runs and valuable machinery can become paralysed at great cost, even more than the cost of rewinding the motor.
Experience shows us that motor protection continues to be a problem, based on the number of breakdowns occuring every day.
Over 60\% of failures are due to causes produced by overheating of the motor winding. These can be detected, and prevented, by measuring and analysing the current being absorbed by the motor, or by controlling temperature limits of the winding. The major causes are as follows:

- Overloads
- Locked rotor
- Over and undervoltage
- Phase imbalance or phase loss
- Long and heavy start-ups
- Excessive operating cycling
- Heating from non-electric causes
- Inadequate motor ventilation
- High room temperature
- Insulation failure

The following diagram shows the dramatic decrease suffered in the electric life of a motor due to the excessive heat of the motor windings (M ontsinger's rule).

As one can see, a $10^{\circ} \mathrm{C}$ increase in temperature reduces the useful life of the motor by half.
The most reliable protection option, which is becoming more commonly used, is the one consisting on:

- Fuses or circuit breakers for short-circuit protection.
- Electronic motor protection relays with thermal memory.
- Contactors for motor control.

FANOX relays

Our R+D Division has allowed FANOX to develop a wide range of easy-to-install and operate electronic relays, at truly competitive prices, which will save downtime and money.

FANOX motor protection relays work with the current measured at every moment. These currents, which are read by three current transformers built into the relays, are electronically processed and used to modelize the thermal image of the motor, and to compare them with the values set in the relay.
The three power supply connections to the motor are not directly connected to the relay, but pass through its corresponding holes.

This provides motor protection against:

- Overloads: since the relay creates a model of the thermal image of the motor during its heating and cooling cycles. In this way, in overload conditions, the relay will take into consideration previous operating conditions of the motor, and will trip faster if the relay has detected other previous overloads. This thermal memory is independent of the auxiliary voltage supply of the relay so that it remains active even when this voltage is cut off or disconnected. The different tripping curves available for selection in the relays allow for precise adjustment to any kind of motor start-up or work cycle.
- Underloads: protects motors against no-load working, which is very important for pumps (dry running).
- Phase imbalance and phase loss: even if the motor is running below its full load current.
- The incorrect phase sequence detection is highly important when the correct phase sequence is critical as in compressors, pumps, fans and other applications.

For protection against no-load operation when the motor is oversized, underload protection by $\cos \varphi$ has been incorporated so that the relay differentiates precisely between very low load and no-load operations, and drops out in the latter case.
In addition, when the relay is connected to thermistor sensors (PTC), it protects the motor against electrical and non-electrical overheating.
A visual display of the tripping reason allows maintenance personnel to identify and immediately act on the underlying causes. The use of the OD display makes this operation much easier.

All of this make FANOX relays the ideal protection for your motors (pumps, compressors, fans, etc).

1. Installation

1.1. General

For correct installation and operation of the relays, please bear on mind the following considerations:

- After being fixed to the DIN rail, the cables for the three phases should be passed through the holes in the relay.

The maximum section of
 700 V insulated wires that can pass through the holes are:

C	$16 \mathrm{~mm}^{2}$
GL, P, PF, G, BG, GEN	$35 \mathrm{~mm}^{2}$

- In star-delta starting, the relay or the current transformers must be installed between the fuses or circuit breaker and the contactor.

- Relays used in combination with frequency inverters:
a) GL relays with the selector for phase sequence in "ON" and P and PF relays: don't use in combination with inverters.
b) GL relays with the selector for phase sequence in "OFF" and C, G and BG: the relay or current transformers and the relay's auxiliary supply shouldn't be connected at the inverter output.
- Connection between the PTC sensors and the relay ($G L, G$ and $B G$). For PTC connection lengths over 100 m or when the influence of high frequency transient voltages is expected, it is adviseable to use screened cable and connect the screen to terminal T1.

Note: every relay comes with its instruction manual providing information on its correct installation and setup.

1.2. Wiring diagrams

PF

2. Setup procedure. C, GL, P, PF, G, BG and GEN

Basically the main steps to follow are described below:

- Adjust the I_{B} current of the relay (C, GL, P, PF, G, BG and GEN). See 2.1.
- Select and adjust the trip class (C, GL, P and PF) or the tripping time (G, BG and GEN). See 2.2. and 2.3.
- Select and adjust the underload tripping level by $\cos \varphi$ and the trip delay (PF). See 2.4.
- Select and adjust the undercurrent tripping level (P). See 2.5.
- Select (ON-OFF) the protection against incorrect phase sequence (GL). See 2.6.
- Select the reset mode to manual or automatic (P and PF). See 2.7.

After installation and setup and before starting up the motor, make sure the motor is in a cold state. This will ensure that both, the relay and motor start to operate with the same thermal memory (cold condition).

GL-G-BG

C-GL-P-PF-G-BG

With current transformers

2.1. Current setting I_{B}. $C, G L, P$, PF, G, BG and GEN

Adjust the current $\boldsymbol{I}_{\mathrm{B}}$ on the corresponding dipswitches (full load current). When setting the current take into account that the base current of the relay always remain added to the current selected with the dipswitches in "ON" position (to the right). The total addition is the set current I_{B}.
Overload tripping current from $1,1 \times I_{B}$.
a) For motor or generator rated currents $\left(I_{N}\right)$ within the range of the relay, the setting \boldsymbol{I}_{B} must be equal to the $\boldsymbol{I}_{\mathrm{N}}$ of the motor or generator.

$$
I_{\mathrm{B}}=I_{\mathrm{N}}
$$

b) For motor rated currents below the range of the relay, the setting I_{B} must be equal to the rated current of the motor $\boldsymbol{I}_{\mathrm{N}}$ multiplied by the number of times that the conductors have been passed through the relay holes.

$$
\boldsymbol{I}_{\mathrm{B}}=\boldsymbol{I}_{\mathrm{N}} \times \mathrm{n}
$$

P

GEN 10

c) For motor or generator rated currents $\left(\boldsymbol{I}_{N}\right)$ above the range of the relay, use three current transformers .../5 in combination with the corresponding relay.

$$
\boldsymbol{I}_{\mathrm{B}}=\frac{\boldsymbol{I}_{\mathrm{N}} \mathrm{mot} / \mathrm{gen}}{\boldsymbol{I}_{\mathrm{N}} \mathrm{CT}} \times 5 \times \mathrm{n}
$$

2.2. Tripping times GEN

Select the tripping curve suitable for the good performance of the generator on the 4 positions dipswitch (trip time setting).

The selected curve will correspond to the result of the addition of the dipswitches in "ON" position (to the right).

2.3. Trip class / tripping time (IEC 947-4-1). C, GL, P and PF / G and BG

The different trip classes enable the user to select the overload protection according to the various motor applications in either short or long start-ups.

The class number or the tripping time refers to the maximum approximate time in seconds allowed for the direct start of the motor from a cold condition.

To select the trip class or tripping time ($\boldsymbol{t}_{6 \times \mathrm{XI}_{8}}$) use the corresponding dipswitches. The recommended values are listed in the following tables.

Motor with direct start-up

$\begin{aligned} & \text { Start } \\ & \text { time (s) } \end{aligned}$	Trip classes												
												$\begin{gathered} \hline \text { Trip time } \\ \boldsymbol{t}_{6 \times I_{\mathrm{B}}} \end{gathered}$	
	Models											Models	
	C9	C21	C45	GL16	GL40	GL90	P19	P44	P90	PF16	PF47	G17	BG17
1	10	10	10	10	10	10	5	5	5	10	10	4	4
2	10	10	10	10	10	10	10	10	10	10	10	6	6
3	10	20	20	15	15	15	10	10	10	20	20	10	10
4	20	20	20	20	20	20	15	15	15	20	20	12	12
5	20	30	30	20	20	25	15	15	15	20	20	16	16
6	20	30	30	25	25	25				30	30	18	18
7	30	30	30	30	30	30				30	30	22	22
8	30	30	30	30	30	35				30	30	24	24
9	30	30	30	35	35	35				30	30	28	28
10	30	30	30	35	35	35				30	30	30	30

Average trip curves (IEC 947-4-1)

Cold curve: it represents the performance of the relay without any previous current flow, first start.

Motor with star-delta start

$\underset{\substack{\text { Start } \\ \text { time (s) } \\ \text { RPM }}}{\square}$													
	Trip classes											$\begin{gathered} \text { Trip time } \\ \boldsymbol{t}_{6 \times I_{B}} \end{gathered}$	
	Models											Models	
	C9	C21	C45	GL16	GL40	GL90	P19	P44	P90	PF16	PF47	G17	BG17
5	10	10	10	10	10	10	5	5	5	10	10	4	4
10	10	10	10	10	10	10	10	10	10	10	10	6	6
15	20	20	20	10	15	15	10	10	10	10	20	8	8
20	20	20	30	20	20	20	15	15	15	20	20	10	10
25	30	30	30	20	20	25	15	15	15	20	20	14	14
30	30	30	30	20	25	30				20	30	16	16
35	30	30	30	20	30	35				20	30	18	18
40	30	30	30	25	30	35				30	30	20	20

Warm curve: the tripping times decrease as the current flows, and are adapted to the motor heating condition based on the thermal memory, the warm condition (IEC-255) is reached after a current of $0.9 \times \boldsymbol{I}_{\mathrm{N}}$ (motor rated current) flows during 2 hours approximately.
$\mathrm{t}_{\text {(s) }}$

$\mathrm{t}_{(\mathrm{s})}$

$\mathrm{t}_{\text {(s) }}$

$\mathrm{t}_{\text {(s) }}$

2.4. Underload by $\boldsymbol{\operatorname { c o s }} \varphi$. PF

The $\cos \varphi$ underload trip level is set by means of a potentiometer from 0,1 to 0,9.
Select this value taking into consideration the no-load motor $\cos \varphi$ and that corresponding to the estimated minimum operating load. Choose an intermediate value between these two $\cos \varphi$ levels and set it in the relay.

Select the underload trip delay from 5 to 45 seconds and set it with the 3 corresponding dipswitches (trip delay).
For your guidance you can find below two practical examples.
a) A very oversized motor for its application. The $\cos \varphi$ of the motor is 0,15 when working without load.

b) A slightly oversized motor for its application. The $\cos \varphi$ of the motor is 0,25 when working without load.

If the above mentioned $\cos \varphi$ values are unknown, the underload trip setting can be made in the following way:

1. Set the underload trip delay to zero by moving the three dipswitches to the left (trip delay).
2. Using the potentiometer ($\cos \varphi$ setting), set the $\cos \varphi$ value to the minimum 0,1 .
3. Start up the motor and run it with the minimum estimated load.
4. Slowly turn the $\cos \varphi$ potentiometer clockwise until the relay trips and the $\cos \varphi$ LED lights up.
5. Turn the $\cos \varphi$ potentiometer anticlockwise until the $\cos \varphi$ is set at approximately 30% less than the previous value (point 4).

6 . Set the underload trip delay using the 3 corresponding dip switches.

2.5. Undercurrent. P

The undercurrent trip level in Prelays is set using three dipswitches. To avoid nuisance trips, set this level to approximately 10% above the no-load motor current.

Example:

2.6. Incorrect phase sequence

Monitoring the current. GL and \mathbf{P}

An incorrect phase sequence is detected by current sensing and it is only operative during the motor start-up, for correct detection the starting time must be longer than 0.2 s .

In GL relays the user can activate or desactivate this protection by a dipswitch. Should the right phase sequence be critical, move the dipswitch to the "ON" position. If this protection is not required leave it always in the "OFF" position.

As this function is not compatible with the use of frequency inverters, where it is necessary to protect phase sequence in these installations, move the dipswitch to "OFF" and install an "S" type relay.

Monitoring the voltage. PF

An incorrect phase sequence is detected by voltage monitoring.
In the event that an incorrect phase sequence has been detected, the motor will not start-up since the relay is tripped because it has previously detected the wrong phase sequence.

2.7. Reset

Manual reset

Push the "RESET" button.
After tripping due to phase imbalance, phase loss, undercurrent or incorrect phase sequence, the relay could be reset after 2 seconds have elapsed.
When a trip is caused by an overload, the waiting time could be as much as 8 minutes for C , GL, G and GB relays, 5 minutes in P and PF relays, and 1 minute in GEN relays, depending on the severity of the fault.

Remote reset

After the required waiting time, disconnect the relay's auxiliary power supply and then reconnect it after 3 seconds.
In P and PF relays the reset position dipswitch should be set at "man".

Automatic reset

Only available in P and PF relays.
Choose this mode by moving the dipswitch to the "auto" position.
After any kind of trip, resetting will take place in approximately 15 minutes time, continuously for unlimited starts.

3. Operating test. TEST

To perform the trip test for phase loss, the current which passes through the relay must be higher than 0.7 the set current $\boldsymbol{I}_{\mathrm{B}}$. Under these conditions, push and hold the TEST button for three seconds, the relay will trip due to phase loss and the corresponding LED will light up.

Motor and generator protection relays. Applications and selection guide

Industries

FANOX protection relays for motors and generators have been installed in the most important areas of industry, including:

- OEM (Original Equipment M anufacturers)
- Chemical and petrochemical
- Quarries, gravel pits and cement factories
- Steelworks, iron and steel industry
- Automotive
- Utilities
- Water treatment and distribution
- Mining
- Food industry
- M arine and shipbuilding
- Sugar industry
- Timber industry
- Elevation industry
- Electric generation and cogeneration
- HVAC (Heat Ventilation Air Condition)

Installations

The following is an informative list of the most important applications using FANOX relays:

- M otor Control Centers (MCC)
- EEx e motors in explosive or hazardous environments
- Submergible pumps, in service stations and water pumping, surface pumps and other types.
- Compressors
- Fans, blowers and ventilators
- Industrial refrigeration and air conditioning
- Centrifuges
- Presses
- Cranes, elevators and escalators
- Lifting machinery in general
- M achine tool
- Conveyor belts
- Mills and mixers
- Generators, alternators and electrical generator sets

Selection guide for protection relays in motors and generators

MODELS	Adjustment range $I_{B}(A)$	Trip classes / Trip times	I>	I<	$\boldsymbol{\operatorname { C o s }} \varphi$	λ	(8)	+ + +
C 9	3-9,3	10-20-30	-			-		
C 21	9-21,6	10-20-30	-			-		
C 45	20-45,2	10-20-30	-			-		
GL 16	4-16,7	5-10-15-20-25-30-35	-			-	${ }^{\mathrm{ON}}$ -	-
GL 40	15-40,5	5-10-15-20-25-30-35	-			-	ON.	-
GL 90	40-91	5-10-15-20-25-30-35	-			-	ON•	-
P 19	7-19,6	5-10-15	-	-		-	-	
P 44	19-44,2	5-10-15	-	-		-	-	
P 90	40-90,4	5-10-15	-	-		-	-	
PF 16	4-16,6	10-20-30	-		-	-	-	
PF 47	16-47,5	10-20-30	-		-	-	-	
G 17 - BG 17	5-17,7	De 2 a 30s	-			-		-
GEN 10	4-10,3	De 0,2 a 3 s	-			-		
$\frac{I>}{\text { Overload }}$	$I<$ Undercurrent		$(r y)$ Phase sequence					

Nominal current rating of asynchronous three-phase motors

The current values listed in the following table correspond to the average ratings given by various manufacturers. In some cases, these may not coincide exactly with the ratings listed on the motor characteristics plates

	kW		0,75	1,1	1,5	2,2	3	3,7	4	5,5	7,5	11	15	18,5	22	30	37	45	55	75	90	110
HP			1	1,5	2	3	4	5	5,5	7,5	10	15	20	25	30	40	50	60	75	100	125	150
I_{N} (A) Average values	$\underset{4 \mathrm{P}}{\text { MOTOR }}$	$\begin{aligned} & 230 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	3,5	5	6,5	9,5	11	-	15	22	28	42	54	68	80	104	130	154	192	248	312	360
		$\begin{aligned} & 400 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	2	2,5	3,5	5	6,5	-	8,5	11	15	22	29	35	42	57	69	81	100	131	162	195
		$\begin{gathered} 440 \mathrm{~V} \\ 50 \mathrm{~Hz} \end{gathered}$	1,7	2,4	3,2	4,5	6	-	8	10,5	14	20	27	33	39	52	64	76	91	120	147	178
		$220 / 240 \mathrm{~V}$ 60 Hz	3,2	4,4	6,2	8,5	10,5	-	14	20	26	38	50	63	74	98	122	146	180	233	290	345
		440/460 V $60 \mathrm{~Hz}$	1,5	2,2	3	4,3	5,5	-	7,5	10	13	19	25	31	37	49	61	73	90	116	144	173
	$\underset{\text { 2P }}{\text { MOTOR }}$	$\begin{aligned} & 400 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	2,0	2,8	3,8	5,5	7	-	9,5	13	16,5	24	32	40	47	64	79	92	113	149	183	220
		440/460 V	1,9	2,5	3,4	4,8	6	7,5	-	11	15	21	27	33	39	53	65	79	95	120	153	183

Dimensions (mm)

C
H*, U1*

ELR-A

GL, P, PF, G, BG, GEN
U3P*, U3N*

S, ST, T2, MT2, U1D, U3S

OD

C, GL, P, PF, BG, GEN ODT2

MTR-10

EMM

Panel cut out 92×92
Panel flush mounting according to DIN 43700

M-GC, M-GC1

FANOX

PROTECTION AND CONTROL

PAE Asuaran Edif. Artxanda, 23 48950 Erandio Bizkaia SPAIN

Tel.: 34944711409
Fax.: 34944710592

e-mail: fanox@fanox.com

 http://www.fanox.comDISTRIBUTOR

